GROUPS COVERED BY AN INFINITE NUMBER OF ABELIAN SUBGROUPS

KÁROLY PODOSKI

Received February 1, 2000

If a group G is covered by κ Abelian subgroups (κ an infinite cardinal) then $|G:Z(G)| \leq 2^{\kappa}$ and this estimate is sharp. This answers a question of Faber, Laver and McKenzie.

1. Introduction

Apropos of an investigation of the commuting graph associated with a group G, P. Erdős asked whether a group G covered by κ Abelian subgroups must have its centre of bounded index. In 1978, V. Faber, R. Laver and R. McKenzie [1] showed that

$$|G:Z(G)| \le 2^{2^{2^{\kappa}}}.$$

M. J. Tomkinson [2] improved this bound in 1985 showing that

$$|G:Z(G)| \le 2^{2^{\kappa}}.$$

Moreover, Tomkinson proved that $|G:Z(G)| \leq 2^{\kappa}$ if we have an irredundant covering (none of the abelian subgroups of the covering can be omitted). Our result is the following:

Theorem 1.1. Let G be a group and κ an infinite cardinal. If G can be covered by κ Abelian subgroups, then $|G:Z(G)| \leq 2^{\kappa}$.

Mathematics Subject Classification (2000): 20E34; 20F24

This result gives a complete solution of Problem 2 of Faber, Laver and McKenzie. It is noted in [1] that the direct sum of 2^{κ} finite non-commutative groups can be covered by κ abelian subgroups and the index of the centre equals 2^{κ} .

2. Proof of the theorem

Since every Abelian subgroup of group G is contained in a maximal Abelian subgroup, we may assume without loss of generality that G has a family \mathcal{K} of maximal Abelian subgroups such that $|\mathcal{K}| = \kappa$ and $\bigcup \mathcal{K} = G$. Then we have $C_G(A) = A$ for all $A \in \mathcal{K}$ and $Z(G) = \bigcap \mathcal{K}$.

First we prove that it is enough to show that $|A:A\cap B|\leq 2^{\kappa}$ for all $A,B\in\mathcal{K}$.

Lemma 2.2. If $|A:A\cap B| \leq 2^{\kappa}$ for all $A, B \in \mathcal{K}$, then $|G:Z(G)| \leq 2^{\kappa}$.

Proof. We obtain
$$|A:Z(G)| = |A: \cap \mathcal{K}| \le \prod_{B \in \mathcal{K}} |A:A \cap B| \le (2^{\kappa})^{\kappa} = 2^{\kappa}$$
, and $|G:Z(G)| = |\bigcup \mathcal{K}:Z(G)| \le \sum_{A \in \mathcal{K}} |A:Z(G)| \le \kappa 2^{\kappa} = 2^{\kappa}$.

Now let us fix $A, B \in \mathcal{K}$, $A \neq B$. We define by transfinite recursion a sequence of elements $b_{\alpha} \in B$ $(\alpha < \nu)$ such that

$$C_A(b_\alpha) \cap C_A(\{b_\beta \mid \beta < \alpha\}) \subsetneq C_A(\{b_\beta \mid \beta < \alpha\})$$

provided the latter does not equal $A \cap B = C_A(B)$. We also choose elements $a_{\alpha} \in C_A(\{b_{\beta} \mid \beta < \alpha\}) \setminus C_A(b_{\alpha})$. For the length of this sequence we have the following.

Lemma 2.3. $|\nu| \leq 2^{\kappa}$.

Proof. For each $\alpha < \nu$ we define $\mathcal{K}_{\alpha} = \{C \in \mathcal{K} \mid \exists \beta : \alpha < \beta < \nu, \ a_{\beta}b_{\alpha} \in C\}$. We claim that these sets are pairwise different. Indeed, let $\alpha < \beta < \nu$ and $C \in \mathcal{K}$ such that $a_{\beta}b_{\alpha} \in C$. Then, by definition, $C \in \mathcal{K}_{\alpha}$. If γ satisfies $\beta < \gamma < \nu$, then $[a_{\beta}b_{\alpha}, a_{\gamma}b_{\beta}] = [a_{\beta}, b_{\beta}] \neq 1$, using $[a_{\beta}, a_{\gamma}] = 1$, $[b_{\alpha}, b_{\beta}] = 1$, $[b_{\alpha}, a_{\beta}] = 1$. Thus $a_{\gamma}b_{\beta} \notin C$, since C is abelian, so $C \notin \mathcal{K}_{\beta}$. Now $|\nu| \leq |\mathcal{P}(\mathcal{K})| \leq 2^{\kappa}$ follows.

Let $\hat{B} = \{b_{\alpha} \mid \alpha < \nu\}$ and let \hat{A} be a transversal (set of left coset representatives) to $A \cap B$ in A. For each $C \in \mathcal{K}$ we define on $\hat{A} \times \hat{B}$ a matrix M_C with

entries in $G \cup \{\emptyset\}$. First let $\hat{A}_C = \{a \in \hat{A} \mid a\hat{B} \cap C \neq \emptyset\}$, $\hat{B}_C = \{b \in \hat{B} \mid \hat{A}b \cap C \neq \emptyset\}$. Then we define for $a \in \hat{A}$, $b \in \hat{B}$

$$M_C(a,b) = \begin{cases} [b^{-1}, a], & \text{if } a \in \hat{A}_C, b \in \hat{B}_C; \\ \emptyset, & \text{otherwise.} \end{cases}$$

Later we shall need the following simple lemma.

Lemma 2.4. If a, a_1, b, b_1 are elements of G and $[a, a_1] = [b, b_1] = [a_1b, ab_1] = 1$ then $[b^{-1}, a] = [b_1^{-1}, a_1]$.

Proof.
$$b^{-1}a_1^{-1}b_1^{-1}a^{-1}a_1bab_1 = 1$$
 implies $a_1^{-1}b_1^{-1}a_1a^{-1}[a^{-1},a_1]ba = b_1^{-1}b[b,b_1^{-1}]$, thus $b_1a_1^{-1}b_1^{-1}a_1 \cdot a^{-1}bab^{-1} = 1$ and $[b^{-1},a] = [b_1^{-1},a_1]$.

Lemma 2.5. The number of different rows of M_C is at most $1+|\hat{B}| \leq 2^{\kappa}$.

Proof. If $a \in \hat{A} \setminus \hat{A}_C$, then the row corresponding to a consists of \emptyset 's. Let now $a \in \hat{A}_C$ with $b_1 \in \hat{B}$ such that $ab_1 \in C$. Suppose that $a^* \in \hat{A}_C$ is such that $a^*b_1 \in C$ as well. Then we claim that the rows corresponding to a and a^* coincide. If $b \in \hat{B} \setminus \hat{B}_C$ then $M_C(a,b) = \emptyset = M_C(a^*,b)$. If $b \in \hat{B}_C$ with $a_1b \in C$, $a_1 \in \hat{A}$ then $[ab_1,a_1b]=1$. The previous lemma implies that $[b^{-1},a]=[b_1^{-1},a_1]$. Similarly, we obtain $[b^{-1},a^*]=[b_1^{-1},a_1]$, hence $[b^{-1},a^*]=[b^{-1},a]$, that is $M_C(a,b)=M_C(a^*,b)$, as we claimed. So the number of different rows of M_C is at most $1+|\hat{B}|$, indeed, and by Lemma 2.3, $|\hat{B}| \leq 2^{\kappa}$.

Lemma 2.6. For every pair $a, a^* \in \hat{A}$, $a \neq a^*$, there is a $C \in \mathcal{K}$ such that the rows of M_C corresponding to a and a^* are different.

Proof. Suppose that $M_C(a,b) = M_C(a^*,b)$ for all $C \in \mathcal{K}$, $b \in \hat{B}$. Take an arbitrary $b \in \hat{B}$. Since $\bigcup \mathcal{K} = G$, there is a $C \in \mathcal{K}$ with $ab \in C$. Then $a \in \hat{A}_C$, $b \in \hat{B}_C$ and $M_C(a,b) = [b^{-1},a]$. Hence $M_C(a^*,b) \neq \emptyset$, so $M_C(a^*,b) = [b^{-1},a^*] = [b^{-1},a]$. That means $a^{-1}a^* \in C_A(b)$. This holds for all $b \in \hat{B}$, hence $a^{-1}a^* \in C_A(\hat{B}) = A \cap B$. As \hat{A} is a transversal to $A \cap B$ in A, we obtain $a = a^*$.

For each $a \in \hat{A}$, there is a vector with coordinates $M_C(a)$ for $C \in \mathcal{K}$. No two of these vectors are identical because of Lemma 2.6, so their number is less than or equal to $(2^{\kappa})^{\kappa} = 2^{\kappa}$.

Acknowledgements. The author is very grateful to P. P. Pálfy, L. Pyber and B. Szegedy for helpful comments.

References

- [1] V. Faber, R. Laver and R. McKenzie: Coverings of groups by abelian subgroups, *Canad. J. Math.*, **30** (1978), 933–945.
- [2] M. J. Tomkinson: Groups covered by abelian subgroups, *Proceedings of Groups—St. Andrews 1985*, London Math. Soc. Lecture Note Ser., 121, Cambridge University Press, 1986, 332–334.

Károly Podoski

Department of Algebra and Number Theory Eötvös Loránd University Budapest, Hungary pcharles@cs.elte.hu